ЗМІСТ:
1 ХАРАКТЕРИСТИКА ТЕХНОЛОГІЧНОЇ СХЕМИ ПРОЦЕСУ ВИРОБНИЦТВА ХЛОРОВОДНЕВОЇ КИСЛОТИ... 5
 1.1 Загальні відомості про хлороводневу кислоту.. 5
 1.2 Опис процесу виробництва хлороводневої кислоти 7
 1.3 Опис технологічної схеми .. 10
 1.4 Висновки до розділу 1 .. 12
2 РОЗРАХУНОК МАТЕРІАЛЬНОГО БАЛАНСУ СХЕМИ 13
 2.1 Комп’ютерний розрахунок матеріальних балансів процесу отримання соляної кислоти .. 13
 2.2 Оцінювання екологічних впливів варіантів ХТС за алгоритмом WAR...... 21
 2.3 Розрахунок матеріальних та теплових балансів прожеро виробництва хлороводневої кислоти ... 22
 2.3.1 Фізико-хімічні властивості основних стадій процесу 23
 2.3.2 Розрахунок матеріального балансу процесу виробництва хлороводневої кислоти ... 26
 2.4 Висновки до розділу 2 .. 27
3 КОМП’ЮТЕРНЕ МОДЕЛЮВАННЯ ТЕХНОЛОГІЧНОГО АПАРАТУ – НАСАДКОВОГО АБСОРБЕРА... 28
 3.1 Технічне завдання на розробку програмного модуля 28
 3.2 Апроксимація лінії паро рідинної рівноваги 28
 3.2.1 Побудова математичної моделі процесу абсорбції 32
 3.3 Реалізація розрахунку в середовищі MathCad 34
4 АВТОМАТИЗАЦІЯ ТЕХНОЛОГІЧНОЇ СХЕМИ ВИРОБНИЦТВА СОЛЯНОЇ

ДП ХА 6108 1490 001 ПЗ

<table>
<thead>
<tr>
<th>Вик.</th>
<th>Аркуш</th>
<th>№ документ.</th>
<th>Підпис</th>
<th>Дата</th>
</tr>
</thead>
<tbody>
<tr>
<td>Розроб.</td>
<td>Кобрин М.М.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Перев.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Н. Контр.</td>
<td>Кобрин М.М.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Затв.</td>
<td>Кобрин М.М.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Комп’ютерне моделювання та автоматизація процесу отримання соляної кислоти
Пояснювальна записка

Літ. Аркуш Аркушів
1 80

НТУУ “КПІ ім. Ігоря Сікорського”, ХТФ, гр. ХА-61
КИСЛОТИ.. 38

4.1 Аналіз параметрів технологічної схеми .. 38
4.2 Визначення параметрів автоматизації ... 39
4.3 Опис схеми автоматизації .. 42
 4.3.1 Контроль температури .. 42
 4.3.2 Контроль рівня .. 42
 4.3.3 Контроль тиску .. 43
 4.3.4 Регулювання витрати .. 43
 4.3.5 Регулювання концентрації водню .. 43
 4.3.6 Контроль концентрації .. 44
4.4 Монтаж звужуючого пристрою для вимірювання витрат 44
4.5 Висновок до розділу 4 ... 47

5 ЕКОНОМІЧНО-ТЕХНІЧНІ РОЗРАХУНКИ.. 48

 5.1 Схема організації цеху .. 48
 5.2 Технологічна підготовка підприємства .. 49
 5.3 Чисельність персоналу .. 50
 5.4 Контроль виробництва .. 53
 5.5 Матеріальна, документальна та організаційно-технічна підготовка
 виробництва ... 54
 5.6 Розрахунок техніко-економічних показників ... 57
 5.7 Перерахунок техніко – економічних показників з використанням засобів
 автоматизації ... 58
 5.8 Порівняння техніко-економічних показників звичайного та автоматизованого
 виробництва соляної кислоти ... 62
5.9 Висновок до розділу 5 .. 63

6 ОХОРОНА ПРАЦІ ... 64

6.1 Виявлення і аналіз шкідливих і небезпечних факторів на проектованому
об’єкті. Заходи з охорони праці .. 64

6.1.1 Повітря робочої зони .. 64
6.1.2 Виробниче освітлення .. 66
6.1.3 Захист від виробничого шуму й вібрацій ... 69
6.1.4 Електробезпека ... 69
6.1.5 Безпека технологічних процесів та обслуговування обладнання 71

6.2 Пожежна безпека .. 73

6.3 Висновок до розділу 6 ... 76

ВИСНОВОК .. 77

СПИСОК ЛІТЕРАТУРИ .. 78
ВІДЛУЧЕНЬ

В даному проекті розглянуто виробництво хлороводневої (або соляної) кислоти. Ця кислота широко використовується в багатьох різних галузях господарства і по об’єму виробництва серед кислот займає третє місце – після азотної і сірчаної кислот.

Хлороводневою кислотою HCl називають розчин хлороводню у воді, сильна одноосновна кислота з різким запахом хлороводню. Температура кипіння та густина соляної кислоти залежать від її концентрації, а максимальна можлива концентрація HCl у соляній кислоті дорівнює 46,15%. Найбільш розповсюдженні типи товарної соляної кислоти мають концентрацію від 27 до 38% мас., що пов’язано з особливостями її виробництва.

Метою даного проекту є дослідження виробництва соляної кислоти методом зануреного горіння, розрахунок матеріальних та енергетичних балансів, технологічних параметрів процесу. Також в процесі виконання буде розроблена функціональна схема автоматизації виробництва, розрахунок технічно-економічних показників і їх оцінка.
1 ХАРАКТЕРИСТИКА ТЕХНОЛОГІЧНОЇ СХЕМИ ПРОЦЕСУ ВИРОБНИЦТВА ХЛОРОВОДНЕВОЇ КИСЛОТИ

1.1 Загальні відомості про хлороводневу кислоту

Хлороводнева кислота – розчин гідроген хлориду у воді; одна з найсильніших кислот, безбарвна рідина, що має різкий запах; сильний електроліт та має формулу: HCl.

Фізичні властивості

Технічна соляна кислота має жовто-зелений колір через вміст в ній суміші хлору та солей заліза. При температурі 20 °С максимальна концентрація становить 38% за масою, густина такого розчину 1.19 г/см³, вязкість такого розчину 2.1мПа*с, температура кипіння 48 °С та температура плавлення -26 °С[25].

Хімічні властивості

- Взаємодіє з металами, що стоять в електрохімічному ряду металів до водню з утворенням солі і виділенням водню;
 \[2Na + 2HCl \rightarrow 2NaCl + H_2 \uparrow \]

- Взаємодіє з гідроксидами металів з утворенням розчинної солі і води (реакція нейтралізації);
 \[NaOH + HCl \rightarrow NaCl + H_2O \]
• Взаємодіє з оксидами металів з утворенням розчинної солі і води;
\[Na_2O + 2HCl \rightarrow 2NaCl + H_2O \]

• Взаємодіє з солями металів, що утворені більш слабкими кислотами;
\[Na_2CO_3 + 2HCl \rightarrow 2NaCl + H_2O + CO_2 \uparrow \]

• Взаємодіє із сильними окисниками (перманганат калію, діоксид марганцю) з виділенням газоподібного хлору.
\[2KMnO_4 + 16HCl \rightarrow 5Cl_2 \uparrow + 2MnCl_2 + 2KCl + 8H_2O \]

Застосування

В хімічній промисловості хлороводнева кислота застосовується у виробництві органічних фарбників, різних хлористих солей, синтетичного каучuku, активного вугілля та ін.

В металообробній промисловості вона використовується для очистки металів перед гальванізацією та паяння. В гідрометалургії кольорових та благородних металів для розчинення руд. В легкій та текстильній промисловості вона використовується при обробці шерсті і текстилю, також гідролізі деревини, не обходитися соляна кислота і виробництва цукру, клея та глюкози[25].

В харчовій промисловості входить у склад всіх можливих регуляторів кислотності і в содовій воді також. У сільському господарстві для консервації кормів. Також соляна кислота застосовується і в медицині, але не технічна, а тільки очищені аналоги, наприклад при недостатній кислотності шлунка.
Особливості використання

Як всі знають хлороводнева кислота це їдка речовина, яка при потраплянні на шкіру викликає тяжкі опіки. Недопустиме потрапляння в очі. При відкриванні посуди з кислотою, утворюється туман і пари хлороводню, які подразнюють дихальні шляхи і слизові оболонки. В реакції з такими речовинами як діоксид марганцю, хлорне вапно та перманганат калію утворює токсичний газоподібний хлор [25].

Хлороводнева кислота – розчин гідроген хлориду у воді; одна з найсильніших кислот, безбарвна рідина, що має різкий запах; сильний електроліт та має формулу: HCl.

1.2 Опис процесу виробництва хлороводневої кислоти

Водний розчин хлороводню назвали соляною кислотою тому, що з давніх-давен його отримували з кухонної солі, діючи на неї сірчаною кислотою. Це так званий сульфатний метод був єдиним на протязі довго проміжку часу. Потім почали отримувати синтетичний хлороводень із хлору та водню. Крім того значна кількість хлороводню отримують в якості побічного продукту при хлоруванні органічних речовин та інших продуктів [25].

В усіх методах одержання хлоридної кислоти в технологічному процесі можна виділити 2 стадії:

- одержання газоподібного HCl;
- абсорбція хлороводню водою з одержанням хлоридної кислоти.

Хлороводень можна отримувати такими методами:

- взаємодією NaCl + H2SO4 – сульфатний метод;
• взаємодією NaCl + S02 в присутності кисню і водяної пари - метод Гаргрівса- Робінзона;
• взаємодією хлору, водяної пари і вугілля;
• прямим синтезом з елементів(синтетичний, в основі якого лежить реакція горіння);
• хлоруванням органічних сполук.
Одержання HCl методом синтезу з елементів

\[\text{H}_2 + \text{Cl}_2 \rightarrow 2\text{HCl} + Q(184,33 \text{ кДж}), \]

так звана синтетична соляна кислота. Реакція утворення HCl протікає за високих температур(в районі 2450 °C) з виділенням великої кількості теплоти. Під дією світла або при нагріванні реакція перебігає з вибухом. Реакція має ланцюговий характер. Зазвичай процес проводять з деяким надлишком \(\text{H}_2(5-10\%) \) і при високій температурі в печі(2500 °C) для запобігання забруднення HCl хлором. Корпус печі виготовляють з вуглецевої та легованої сталі, нижня частина печі із вогнетривкого матеріалу. Певний період часу все технологічне обладнання виготовляють із вуглецево-графітних матеріалів та кераміки. Часто синтез HCl здійснюється в вертикальних циліндричних контактних печах, виконаних з спецсталей і оснащених особливыми пальниками.

Рисунок 1.1 – Схема пальника

Пальник складається з двох концентрично розміщених труб. У внутрішню трубу знизу поступає сухий Cl2, а через зовнішню поступає \(\text{H}_2 \). Тут вони змішуються і згорають з утворенням полум’я у вигляді великого
факела. Далі утворений 85-90% HCl поступає на абсорбцію. Також використовують горизонтальні печі з водяним охолодженням печі зануреного горіння. Новим в синтезі HCl є суміщення 2-х стадій з використанням апарату печі-абсорбера (рис. 1.2).

![Рисунок 1.2](image)

Абсорбція хлороводню у воді проходить з виділенням великої кількості тепла(утворенні гідратів), якого достатньо для нагрівання кислоти до кипіння. Для отримання більше концентрованої соляної кислоти потрібно відводити тепло, так як розчинність хлороводню у воді з підвищенням температури зменшується. Поглинання HCl проводять в абсорберах з відводом тепла. Якщо через стінку це ізотермічна абсорбція, у випадку
відводу тепла в результаті випаровування води – адіабатична абсорбція.

Рисунок 1.3 – Технологічна схема процесу виробництва хлороводневої кислоти: I – піч зануреного горіння; II – колона каплевловлювач; III – холодильник-абсорбер; IV – сепаратор; V – збірник готового продукту; VI – хвостовий скрубер

1.3 Опис технологічної схеми

Синтез хлороводню здійснюється в печі котлі під шаром рідини(рис.1.3. I). Піч зануреного горіння представляє собою вертикальний пустотілий цилиндр зі сферичною кришкою, футерований всередині в два шари діабазової плитки на діабазовому мастилі. На кришці печі – котла є три штуцера, в один з них, той що по центру вставляється пальник, в другий подається вода а третій з’єднаний з башньою каплевловлювачем. Підпалюють піч через пальник, в якому підпалюють водень. Далі піч заповнують водою до рівня, який забезпечує занурення пальника в рідину.

Прямий потік хлороводню. Хлороводень утворюється в печі. В ній переважна його кількість, приблизно 70-80% сорбується на місці водою. Сорбція проходить не повна, так як вода гаряча, а розчинність із зростанням температури спадає. Із печі виходить суміш газів, яка складає тільки 20% від
того, що було утворено в печі. Цей газ у свою чергу складається на 80% з хлороводню, а на інші 20% з домішок, які складають кисень, нітроген і вуглециклій газ. Цей газ рухається з печі і направляється до холодильника абсорбера, де він первинно очищається і на виході лишається тільки 5% хлороводню від тієї маси, яка входила до абсорбера. У сам абсорбер також входить вода, яка містить в районі 3% хлороводню і приходить зі скрубера. Крім газу зі скрубера ще виходить соляна кислота концентрацією 15-20%. Потім вона ще розбавляється холодною водою. У сепаратора відбувається відділення водяного потоку, а всі гази які не сорбували прямують до скрубера. Склад газів, що виходить із сепаратора такий самий як той, що потрапляє у холодильник-абсорбер. У скрубер входить чиста вода, без домішок та речовин. В газовому потоці, що входить в нього міститься 5% хлороводню та всі гази, які прийшли з печі. Вони по масі не змінюються. На виході зі скрубера ми отримаємо 5% хлороводню, тільки відносно маси оціх газів, яка з водою утворює слабо розведену соляну кислоту, що прямує до абсорбера де ще раз розводиться холодною водою.

Безперервна подача води починається в момент виділення парів хлороводню і води, що спостерігається при температурі від 105 до 107 ºС, з урахуванням забезпечення постійного рівня рідини в печі. Суміш парів конденсується в печі і частково у колоні-каплевловлювачі, що розташована над піччю. Після виходу з колони хлороводень охолодається спочатку у трубопроводі за рахунок природної тепловіддачі в навколишнє середовище, а далі направляється в холодильник-абсорбер, де хлороводень поглинається водою. Також тут відбувається охолодження до температури 30-45 ºС промисловою водою. Із холодильника-абсорбера газ та соляна кислота при концентрації не нижче 31% та температури 20-40 ºС поступають в сепаратор, із якого кислота далі направляється в збірник готового продукту, а газ потоком 9 направляється до хвостового скрубера, де утворюється розбавлена соляна кислота і відбувається кінцева відмивка газу від хлороводню. Ця
кислота із хвостового скрубера подається на зрошення холодильника-абсорбера потоком 13 та 14 до печі-котла, а залишки на вихід, як зображено на рис.1.3 потоком 10.

Установка досить компактна, просто в обслуговуванні і забезпечує можливість отримання концентрованої соляної кислоти, що містить 33-36 % хлороводню.

1.4 Висновки до розділу 1

В даному розділі було описано загальні властивості та характеристики хлороводневої кислоти. Було приведено різні методи отримання соляної кислоти та описано кожен з них. Для кращого розуміння та аналізу було зроблено опис технологічного процесу.
2 РОЗРАХУНОК МАТЕРІАЛЬНОГО БАЛАНСУ СХЕМИ

2.1 Комп’ютерний розрахунок матеріальних балансів процесу отримання соляної кислоти

Хіміко-технологічні розрахунки складають основну, найбільш трудомістку частину проекту будь-якого хімічного виробництва. Вони в свою чергу є завершуючою стадією технологічного дослідження і виконуються також при обстеженні працюючих цехів та установок. Метою цих розрахунків можуть бути і визначення кінетичних констант і обчислення реакційних об’ємів, також оптимальних параметрів виробництва.

Матеріальні розрахунки, разом з тепловими, є основою технологічних розрахунків. До них слід віднести визначення виходу основного і побічних продуктів, витратних коефіцієнтів по сировині, виробничих втрат. Тільки визначивши матеріальні потоки, можна провести необхідні розрахунки виробничого обладнання і комунікацій, оцінити економічну ефективність та доцільність процесу. Складання матеріального балансу необхідна складова як при проектуванні нового, так і при аналізі роботи існуючого виробництва.

У даному розділі представлений комп’ютерний розрахунок матеріального балансу процесу отримання соляної кислоти методом зануреного горіння шляхом розчинення хлороводню у воді, склади потоків, а також витрату кожного компоненту по стадійно. Головною задачею матеріального балансу є розрахунок кількості використаних, як введених так і заданих речовин, кількості отриманого продукту, а також побічних речовин. Матеріальний баланс складають по рівнянню основної сумарної реакції з урахуванням побічних реакції згідно закону збереження маси речовини. Кількість речовин, введених в виробництво, повинна дорівнювати кількості одержаних речовин. Це вираховується на основі стехіометричних рівнянь, що описують окремі стадії виробництва і побічні процеси.
Матеріальний і енергетичні баланси дозволяють скласти найбільш раціональну схему виробництва, встановити граничне значення виходу продукції, витрат сировини, енергії, визначити необхідні розміри апаратури, її економічні показники, ступінь досконалості відповідних процесів. При складанні матеріальних балансів необхідно знати склад сировини, продуктів і напівпродуктів, а інколи їх деякі фізико-хімічні властивості і їх зміни в залежності від зовнішніх умов.

Для розрахунку матеріального балансу застосуємо пакет програм для моделювання хімічних процесів - ChemCad 7.1.5. Розроблена схема наведена на рисунку 2.1. Вхідні дані для розрахунку матеріального балансу представлено в таблиці 2.1.

Таблиця 2.1 – Вхідні параметри процесу

Рисунок 2.1 – Схема процесу отримання хлороводневої кислоти

Для розробки схеми обирались лише ті апарати, котрі безпосередньо впливають на розрахунок матеріального балансу та є наближеними до реальних. Замість холодильника-абсорбера було вибрано теплообмінник на схемі це видно, а також сепаратор виконує роль хвостового скрубера. Список використаних апаратів та їх вхідні та вихідні потоки наведені у таблиці 2.2.
На початку роботи у моделюючій програмі ChemCAD її потрібно налаштувати відповідно до своїх потреб.

1) Задаємо технічні розмірності.
 Для цього у рядку меню натискаємо Format – Engineering Units. У спливаючому вікні обираємо розмірності одиниць із системи СI (рис. 2.2).

2) Обираємо компоненти (речовини), що використовуються у схемі.
 Усі компоненти програми містяться у банку даних, доступ до якого можливий наступним чином: у рядку меню натискаємо ThermoPhysical – Select Components, які доступні в режимі Simulation (Моделювання). Обираємо за допомогою вбудованого пошуку потрібні речовини (рис. 2.3), а саме: хлор, водень, хлороводень, вода, нітроген, кисень а також вуглецислий газ.

Таблиця 2.2 – Список використаних апaratів
3) Обираємо апарати для технологічної схеми.

ChemCAD містить вбудовану бібліотеку апаратів (рис. 2.4), яка доступна при відкритті нового документу.
Рисунок 2.4 – Бібліотека апаратів у ChemCAD

Вхідні і вихідні потоки.

Розміщення зображень апаратів технологічної схеми починається, як правило, з виставлення піктограми Feed (живлення). Поруч з піктограмою автоматично виставляється її ID (ідентифікаційний) номер. Першому апарату присвоюється ID, потім номер збільшується в порядку виставлення піктограм. Завершення розміщення зображень апаратів технологічної схеми закінчується виставленням піктограм Product (Продукт).

Наступним етапом є задання параметрів потоків живлення. Термодинамічний стан потоку визначається будь-якими двома параметрами з трьох наступних: температури, тиску та часткою пари, зазвичай задаються температура і тиск.

Налаштування апаратів та завдання потоків відбувається за допомогою введення параметрів кожного потоку. На рис. 2.5 зображені задані характеристики всіх вхідних потоків.
Рисунок 2.5 – Налаштування вхідних потоків

Після налаштування всіх потоків запускаємо схему (рис. 2.6).

Рисунок 2.6 – Інформація про потік 5,8,13

Для аналізу результатів розрахунку схеми знадобляться наступні звіти:

➢ Структура схеми (Topology).
➢ Матеріальний баланс (Mass Balance).
➢ Термодинамічні властивості (Termodynamics).
Тепловий баланс (Energy Balance).

Звіт по потоках (Flow Summaries).

В таблицях (2.3 – 2.6) наведені матеріальні баланси апаратів.
Таблиця 2.3 – Матеріальний баланс реактора

Таблиця 2.4 – Матеріальний баланс абсорбера
Таблиця 2.5 – Матеріальний баланс сепаратора

Таблиця 2.6 – Матеріальний баланс хвостового скрубера
Продуктивність схеми – 660,392 кг/год хлороводневої кислот

2.2 Оцінювання екологічних впливів варіантів ХТС за алгоритмом WAR

Для оцінювання екологічних впливів ХТС потрібно обрати на панелі інструментів вкладку Tools, натиснути на Environmental Report та обрати потрібний потік.

Raw Component Factors

<table>
<thead>
<tr>
<th>ID Component Name</th>
<th>Ozone Depletion</th>
<th>Global Warming</th>
<th>Smog Formation</th>
<th>Acid Rain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hydrogen</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>62 Water</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>105 Chlorine</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>104 Hydrogen Chlorid</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.88</td>
</tr>
<tr>
<td>46 Nitrogen</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>47 Oxygen</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>49 Carbon Dioxide</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Raw Component Factors

<table>
<thead>
<tr>
<th>ID Component Name</th>
<th>Human Toxicity</th>
<th>Ecotoxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OSHA PEL LD50</td>
<td>LC50 LD50</td>
</tr>
<tr>
<td>1 Hydrogen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>62 Water</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>105 Chlorine</td>
<td>3</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>Component Name</th>
<th>Ozone Depletion</th>
<th>Global Warming</th>
<th>Smog Formation</th>
<th>Acid Rain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hydrogen</td>
<td>0.00e+000</td>
<td>0.00e+000</td>
<td>0.00e+000</td>
<td>0.00e+000</td>
</tr>
<tr>
<td>62</td>
<td>Water</td>
<td>0.00e+000</td>
<td>0.00e+000</td>
<td>0.00e+000</td>
<td>0.00e+000</td>
</tr>
<tr>
<td>105</td>
<td>Chlorine</td>
<td>0.00e+000</td>
<td>0.00e+000</td>
<td>0.00e+000</td>
<td>0.00e+000</td>
</tr>
<tr>
<td>104</td>
<td>Hydrogen Chlorid</td>
<td>0.00e+000</td>
<td>0.00e+000</td>
<td>0.00e+000</td>
<td>0.00e+000</td>
</tr>
<tr>
<td>46</td>
<td>Nitrogen</td>
<td>0.00e+000</td>
<td>0.00e+000</td>
<td>0.00e+000</td>
<td>0.00e+000</td>
</tr>
<tr>
<td>47</td>
<td>Oxygen</td>
<td>0.00e+000</td>
<td>0.00e+000</td>
<td>0.00e+000</td>
<td>0.00e+000</td>
</tr>
<tr>
<td>49</td>
<td>Carbon Dioxide</td>
<td>0.00e+000</td>
<td>3.17e-004</td>
<td>0.00e+000</td>
<td>0.00e+000</td>
</tr>
</tbody>
</table>

Normalized Impact Scores

<table>
<thead>
<tr>
<th>ID</th>
<th>Component Name</th>
<th>Human Toxicity</th>
<th>Ecotoxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hydrogen</td>
<td>OSHA PEL</td>
<td>LD50</td>
</tr>
<tr>
<td>62</td>
<td>Water</td>
<td>0.00e+000</td>
<td>0.00e+000</td>
</tr>
<tr>
<td>105</td>
<td>Chlorine</td>
<td>9.72e-002</td>
<td>2.17e+001</td>
</tr>
<tr>
<td>104</td>
<td>Hydrogen Chlorid</td>
<td>4.16e-002</td>
<td>7.97e-001</td>
</tr>
<tr>
<td>46</td>
<td>Nitrogen</td>
<td>0.00e+000</td>
<td>0.00e+000</td>
</tr>
<tr>
<td>47</td>
<td>Oxygen</td>
<td>0.00e+000</td>
<td>9.03e-002</td>
</tr>
<tr>
<td>49</td>
<td>Carbon Dioxide</td>
<td>3.24e-005</td>
<td>0.00e+000</td>
</tr>
</tbody>
</table>

Границо допустимий рівень (OSHA PEL) - законодавчо затвердена верхня межа величини рівня факторів, при впливі яких на організм періодично або протягом усього життя не виникає захворювання або змін стану здоров'я. LD50- середня доза речовини, що викликає загибель половини членів випробуваної групи. Як бачимо середня доза для соляної кислоти 455. Зі звіту видно що більшість компонентів значно перевищують допущені норми. LC50 означає «Смертельна концентрація». Значення LC стосуються концентрації хімічної речовини в повітрі, але в екологічних дослідженнях це також може означати концентрацію хімічної речовини у воді. Як бачимо концентрація соляної кислоти у рідині становить 4841 на масу.

2.3 Розрахунок матеріальних та теплових балансів прожеро виробництва хлороводневої кислоти
2.3.1 Фізико-хімічні властивості основних стадій процесу

У даному розділі виконується комп’ютерний розрахунок матеріальних балансів процесу абсорбції хлороводню водою, визначення загальних та по компонентних витрат, складів потоків.

Як було сказано вище, хлороводень раніше отримували в основному сульфатним методом. Він заснований на взаємодії хлориду натрію з концентрованою сірчаною кислотою. Але на сьогоднішній день для отримання хлороводню використовують прямий синтез із простих речовин:

\[H_2 + Cl_2 \rightleftharpoons 2HCl \]

У виробничих умовах синтез відбувається в спеціальних установках, в яких водень безупинно згорає в потоці хлору, змішуючись з ним у факелі печі.

Цим досягається спокійне протікання реакції, без вибухів. Водень поступає до печі у надлишку від 5-10%, що повністю дозволяє використати більш цінний хлор і отримати чисту соляну кислоту.

Абсорбція хлороводню водою це екзотермічна реакція. Відведення тепла, що виділяється відбувається різними методами, що буде описано далі при адіабатичних та ізотермічних процесах поглинання[25].

Абсорбційна рівновага системи хлороводень – вода зображено на рис.2.1-рис.2.2. Значення парціального тиску хлороводню всередині газової суміші застосовуються тільки при сталій температурі. Парціальний тиск хлороводню дуже низький для малих рівнів концентрацій хлороводневої кислоти. Значні зміни можна побачити тільки у випадку високого рівня концентрації кислоти.
Абсорбція хлороводню у воді це екзотермічний процес, близько 2100 кДж/кг HCl. Температура кипіння залежить від концентрації як зображено на рисунку 2.2. Максимальна температура кипіння 108.6 °С досягається при концентрації приблизно 21% HCl. Далі температура кипіння зменшується майже лінійно при збільшенні концентрації соляної кислоти. Також на рисунку 2.2 зображена діаграма кипіння при нижчому тиску.

Діаграма стану для системи HCl/H2O при тиску 1 бар, що рівно 101.3 кПа наведена для абсорбції в режимі кипіння на рис.2.3. Хлороводень погано випаровується при низьких рівнях концентрації соляної кислоти. Це значить, що газова фаза майже не вміщує в собі хлороводню. В азеотропній точці значення концентрації HCl будуть однаковими як для газової так і для рідкої фази. Випаровування хлороводню сильно зростає тільки вище азеотропної
точки. Практично газова фаза складається тільки із хлороводню при рівні концентрації соляної кислоти в 40%.

Відповідно до S-подібної діаграми стану, максимальну концентрацію соляної кислоти неможливо перевищити при нормальних умовах. Максимальна концентрація складає до 35% при тиску в 101.3 кПа і чистому потоці хлороводню, хоча зазвичай застосовуються більш низькі значення концентрації[25].

Рівні концентрації речовин здатних до абсорбції у воді надзвичайно малі, тому їх впливом на поглинання HCl можна знехтувати.
2.3.2 Розрахунок матеріального балансу процесу виробництва хлороводневої кислоти

Хіміко-технологічні розрахунки складають головну, найбільш трудомістку частину проекту будь-якого хімічного виробництва, вони ж є завершуючою стадією лабораторного технологічного дослідження і виконуються також при обстеженні працюючих цехів і установок. Метою цих розрахунків може бути визначення кінетичних констант і оптимальних параметрів виробництва або ж обчислення реакційних об'ємів і основних розмірів хімічних реакторів.

Матеріальні розрахунки, разом з тепловими, є основою технологічних розрахунків. До них слід віднести визначення виходу основного і побічних продуктів, витратних коефіцієнтів по сировині, виробничих втрат. Тільки визначивши матеріальні потоки, можна провести необхідні конструктивні розрахунки виробничого обладнання і комунікацій, оцінити економічну ефективність і доцільність процесу, складання матеріального балансу необхідне як при проектуванні нового, так і при аналізі роботи існуючого виробництва. При проектуванні нових виробництв використовується досвід тих, що існують з урахуванням результатів сучасних новітніх досліджень. На основі порівняльного техніко-економічного аналізу виробництв, що діють, можливо вибрати раціональнішу технологічну схему, оптимальні конструкції апаратів і умови здійснення процесу.

Основою матеріального балансу є закони збереження маси речовини і стехіометричних співвідношень[25].

Матеріальний баланс складають по рівнянню основної сумарної реакції з урахуванням побічних реакцій згідно закону збереження маси речовини. Загальна маса всіх матеріалів, які поступають в апарат (або в цех) тобто прихід, рівний загальній масі матеріалів, що виходять, тобто витраті.
Матеріальний баланс складають на одиницю маси основного продукту (кг, т) або на одиницю часу (год, доба)[25].

Матеріальний баланс може бути представлений рівнянням, ліву частину якого складає маса всіх видів сировини і матеріалів, що поступають на переробку \(\sum G \), а праву — маса отримуваних продуктів \(\sum G' \) плюс виробничі втрати \(G_{\text{втр}} \):

\[
\sum G = \sum G' + G_{\text{втр}}
\]

Для розрахунку МТБ було використано спеціальне програмне забезпечення ChemCad та MathCAD.

2.4 Висновки до розділу 2

В даному розділі було розроблену технологічну схему виробництва у середовищі ChemCad, і розраховано матеріальний та енергетичний баланс для виробництва. Було виконано оцінку технологічних впливів та їх оцінку. Більш детально було розглянуто процес абсорбції, яка я важливою частиною процесу виробництва і приведено залежності концентрацій хлороводню від тиску та температури проведення процесу.
З КОМП'ЮТЕРНЕ МОДЕЛЮВАННЯ ТЕХНОЛОГІЧНОГО АПАРАТУ – НАСАДКОВОГО АБСОРБЕРА

3.1 Технічне завдання на розробку програмного модуля

Розробити програмне забезпечення в середовищі MathCad для конструктивного розрахунку насадкової аборбційної колони, що використовується для процесу поглинання хлороводню водою. Паро-газова суміш поступає із печі зануреного горіння, де утворюється хлороводень.

3.2 Апроксимація лінії паро рідинної рівноваги

Діаграма стану для системи HCl/ H2O має дуже складний вид кривої і суцільно її не підібрати. Тому для того, щоб її апроксимувати потрібно провести апроксимації по частинам.

Взагалі апроксимація це наближений опис однією функцією (апроксимувальною) заданого вигляду іншої функції, яка задається у будь-якому вигляді. В нашому випадку для апроксимації лінії паро рідинної рівноваги буде застосовано 3 функції, і крива відповідно буде розподілена на три частини. Для апроксимації існує два основних підходи:

- Апроксимувальна крива повинна проходити через всі точки, які задані таблицею;
- Апроксимація простою функцією, що використовується при всіх табличних значеннях, але не обов’язково, щоб вона проходила через всі точки.

Перший підхід можна виконати з допомогою методів інтерполації. Другий підхід зветься припасуванням кривої, яку прагнуть провести так, щоб відхилення від табличних значень були мінімальними. Зазвичай
користуються методом найменших квадратів (МНК), тобто зводять до мінімуму суму квадратів різниць між значенням функції, яка визначена кривою та таблицею.

Перший участок буде в межах від 0 до 0.215. Його вигляд зображено на рисунку 2.4.

Рис.2.4 – перша частина апроксимації

Для побудови, було використану таку експоненціальну функцію:

\[Y = e^{-1 + e^{-(x + 12 + (-3))}} \]

Використовується для опису експериментальних даних, швидкість зменшення або зростання яких невпинно зростає, що відповідає нашому відрізку.

Другий участок знаходиться в межах від 0,215 до 0,30. Результати зображені на рисунку 2.5.
Рис.2.5 – друга частина апроксимації

Для того, щоб знайти функцію цього відрізку було застосовано вбудовану функцію Excel – лінія тренду квадратичного типу, а також табличні дані на основі яких лінія і була побудована. Отже друга апроксимуюча функція:

\[Y = -38.81 \cdot x^2 + 27.499 \cdot x - 3.8944 \]

Третій участок знаходиться в межах від 0,3 до 0,5. Його представлено на рисунку 2.6.
Рис.2.6 – третя частина апроксимації

Для побудови цього відрізку було використано також МНК, але спочатку потрібно було скористатись коефіцієнтами 0,3 та 0,78, щоб перенести в початок координат. Функція виглядає таким чином:

\[Y = 0.78 + 0.3 \times (x - 0.3)^{0.78} \]

Ця функція відноситься до ряду статичних, так як останні застосовуються, коли швидкість зміни експериментальних даних постійно збільшується або зменшується.

Для наглядності на рисунку 2.7 буде зображено апроксимований суцільний графік стану для системи HCl/ H2O. Також його буде порівняно рисунком 2.3 і приведені значення максимального абсолютного відхилення та значення середньоквадратичного відхилень.

Значення максимального абсолютного відхилення:

\[\text{МАВ} = 0,019 \]

Значення середньоквадратичного відхилення:

\[\text{СКВ} = 0,0000437 \]
Рис.2.7 - Оцінювання точності апроксимацій лінії рівноваги

3.2.1 Побудова математичної моделі процесу абсорбції

Для складання математичної моделі опис процесу абсорбції повинен включати в себе такі пункти:

- кінетика протікання процесу;
- опис фазової рівноваги в системі газ-рідина;
опис структури потоків фаз у апараті.

Як було сказано вище, на прикладі азеотропної точки, при стані рівноваги, заданих температурі та тиску, будь-яка концентрація розподіленої в одній фазі речовини буде рівна концентрація цієї речовини в іншій фазі [32]. Даний стан рівноваги описується в основному таким математичним рівнянням:

\[y_p = f(x) \]

de \(x \) – концентрація розподіленої речовини в одній фазі, а \(y_p \) – рівноважна концентрація цієї речовини у іншій фазі.

Якщо рівновага відсутня, тоді між фазами відбувається перенесення речовини з однієї фази в іншу, у відповідності до рівняння масопередачі:

\[dM = K \times (y - y_p) \times dF \times dt, \]

de \(dM \) – кількість речовини, яка перейшла з однієї фази в іншу, \(K \) – коефіцієнт масопередачі, \(dF \) – міжфазова поверхня, \(dt \) – час.

Отже, можна зробити висновок, що рушійною силою процесу абсорбції в будь-якій точці по висоті апарату являється різниця між поточною концентрацією компонента та його рівноважною концентрацією [32].

Щоб описати структура потоків, які рухаються у таких абсорберах, використовуються різні моделі: модель ідеального витіснення, дифузійна, коміркова і комбінована модель. Саме для моделювання процесу в насадковій колоні, значного поширення отримала модель ідеального витіснення [32].

Щоб побудувати математичну модель потрібно прийняти такі припущення:

- газ і поглинач не взаємодіють між собою;
- масові витрати та швидкості відповідних потоків постійні;
- потоки рідини та газу рухаються назустріч один одному у поршневих режимах.
Таким чином, математична модель стаціонарного режиму процесу абсорбції в насадковій колоні можна подати у такому вигляді:

$$\begin{cases} Ldx + K(y - y_p)Sdl = 0 \\ -Gdy - K(y - y_p)Sdl = 0 \end{cases}$$

$$y_p = f(x), \quad y(l = 0) = y_{вх}, \quad x(l = H) = x_{вх}$$

де L, G – масові витрати рідини та газу відповідно, K – об’ємний коефіцієнт масопередачі, кг/(с·м³), S – площа поперечного перетину $(\pi D^2)/4$, м²; D – внутрішній діаметр колони, м; y – концентрація компоненту в газі, відносні одиниці; y_p – концентрація компоненту в газовій фазі, рівноважної з рідиною, відносні одиниці, x – концентрація компоненту в рідині, відносні одиниці; H – висота шару насадки, $x_{вх}, y_{вх}$ – концентрація компоненту на вході в апарат у рідині і газі та dl – координата висоти шару насадки, м[32].

3.3 Реалізація розрахунку в середовищі MathCad

Для розрахунку абсорбера насадкового типу початковими величинами є початкова концентрація хлороводню у газі та воді, тиск і температура, за якої відбувається абсорбція. Задаємось початковими величинами(рис.3.1):

Рис.3.1- початкові величини

Пояснення та розмірність кожної з величин була приведена вище. Тепер потрібно підібрати діаметр та висоту шару насадки в апараті, для
забезпечення вихідної концентрації хлороводневої кислоти, згідно вимог (рис.3.2).

Рис.3.2 – Підібрані діаметр та висота

Реалізуємо математичну модель процесу абсорбції, а також застосовуємо три апроксимовані функції, які були виконані у попередні розділі, щоб апроксимувати лінію паро рідинної рівноваги (рис.3.3).

Рис.3.3 – Математична модель

Щоб продовжити розрахунки потрібно скористатись вбудованою функцією «odesolve», яка разом із блоком Given дозволяє інтегрувати окреме диференціальне рівняння (рис.3.4).
Рис.3.4 – Функція odesolve

В нашому випадку ім’я змінної це (x,y,yp), а l – це кінцеве значення аргументу яке ми задаємо, уже після самої функції odesolve. Значення l в нашому випадку, це межа з 0 до 2,5 відповідно з кроком 0,1. Дана інформація буде проілюстрована на рисунку 3.5. Н – кількість фіксованих кроків інтегрування. Блок Given розміщується перед зверненням до odesolve і складається початкових умов та рівняння.

Матриця результатів значень х,у,yp має такий вигляд(рис.3.5):

Рис 3.5 – Матриця результатів

Проте розрахунки зручно аналізувати у графічній формі, завдяки цьому можна зробити висновки та дати правильну оцінку. Результати у графічній формі зображені на рисунку 3.6.
Рис. 3.6 – Профілі концентрацій по висоті шару насадок

На основі графіку можна зробити такі висновки, діаметр колони 1 метра, а висота шару насадок 2.5 м, отже конструктивні параметри абсорбційної колони було розраховано. Відомо, що висота шару насадок не повинна перевищувати 4d, тобто умова виконується і можна використовувати один шар насадок висотою 2.5 м.
4 АВТОМАТИЗАЦІЯ ТЕХНОЛОГІЧНОЇ СХЕМИ ВИРОБНИЦТВА СОЛЯНОЇ КИСЛОТИ

4.1 Аналіз параметрів технологічної схеми

На сьогоднішній день розробка системи автоматизації виробництва є важливим етапом проектування цього ж виробництва, так як забезпечує не тільки контроль за якістю продукції і раціонального використання сировини та енергії, але і дозволяє мінімізувати використання ручної праці на небезпечних об’єктах. А також забезпечать необхідну зручність для контролю та регулювання технологічним процесом. Це в свою чергу актуально для хімічних виробництв, що часто використовують вибухонебезпечні речовини та працюють в небезпечних екологічних умовах і потребують великих затрат енергії.

Об’єктом автоматизації є технологічна схема виробництва хлороводневої кислоти. Метою технологічного процесу являється отримання необхідного виходу продукту із заданою конценрацією та виходом продукту. У даному процесі співвідношення вхідних речовин впливає на протікання процесу, тому його необхідно регулювати. Водень потрібно подавати на 5-10% більше проти стехіометричного необхідного для спалювання хлору.

В ході аналізу технологічної схеми було з’ясовано, що для забезпечення необхідного протікання процесу, без відхилень та проблем, потрібно здійснювати регулювання наступних величин:
- Регулювання співвідношення витрати технічного хлору та технічного водню, які надходять до печі;
- Стабілізація температури у холодильнику-абсорбері шляхом регулювання витрат охолоджуючої води на вході до нього;
- Контроль температури та тиску в печі зануреного горіння;
• Регулювання рН від ходячих газів, шляхом зміни витрати води, що подається до мокрого скрубера;
• Контроль температури води, що подається до мокрого скрубера;
• Сигналізація про заповнення збірника готового продукту на 80% рівня;
• Сигналізація концентрації водню на виході зі скрубера.

Якщо не буде реалізовано дане регулювання, то в ході процесу можливе відхилення протікання процесу в іншому напрямку та відхилення від запланованого виходу продукту і його концентрації.

4.2 Визначення параметрів автоматизації

На підставі аналізу технологічної схеми було визначено необхідний рівень автоматизації виробництва, обрано об’єкти автоматизації, регулюючі та регульовані параметри, реєстрації та регулювання і визначено параметри контролю. Для обраних параметрів було визначено необхідну точність регулювання та вимірювання, відповідно нормам технологічного режиму та діапазони їх можливої зміни. Інші дані можна глянути в таблиці 4.1.

Таблиця 4.1 – Параметри регулювання та контролю виробництва
Відповідно до даних, наведених у таблиці 4.1, розроблена схема автоматизації процесу отримання хлороводневої кислоти включає в себе 10 контурів контролю та регулювання витрати, 1 контур контролю тиску, 8 контурів контролю і регулювання температури, 1 контур сигналізації, 1 контур показання та контролю рівня, 1 контур показання та контролю концентрації та 1 контроль показання та регулювання концентрації.

Всі засоби автоматизації підбирають у відповідності до особливостей проведення технологічного процесу. Також потрібно дотримуватись таких правил:

- клас точності приладів повинен відповідати технологічним вимогам;
- для регулювання одних і тих самих параметрів технологічного процесу будуть застосовуватись однотипні засоби автоматизації;
- діапазон вимірювання приладів має відповідати діапазону відповідних технологічних параметрів.

Схема автоматизації процесу виробництва хлороводневої кислоти наведена в додатку А.
4.3 Опис схеми автоматизації

4.3.1 Контроль температури

Для контролювання температури у всіх ділянках схеми автоматизації, окрім печі, в якості вимірювального приладу використовується термоперетворювач ТСМ-50М. ЧЕ - датчик температури голчатий. Тип НСХ 50М. Схема з'єднань термоперетворювачів опорів 2х,3х,4х провідна. Матеріал нержавіюча сталь 12Х18Н10Т. Глибина занурення 150 мм. Захист від пили та води IP55. Стійкість до вібрації Н3. Діапазон температур від -40 до 180˚С. Вихідний сигнал 4..20мА. Також для контролювання та реєстрації води на вході в скрубер встановлено автоматичний одноканальний самописний показуючий реєструючий прилад КСМ 2-024. Для регулювання температури на виході з холодильника-абсорбера встановлено електричний регулятор температури показуючий РТ-0792; вх. сигнал 0,5 мА; вих. 4..20мА; клас точності 0,1 та Електричний виконавчий механізм МЭО-100 / 25-0, 25-87; потужність, що споживається, 260 Вт; тип двигуна ДСТР-135-1,8-136 ф-0620 або фц-0619; живлення змінним струмом 220/380В / 50 Гц.

Для визначення температури реактора, потрібно використовувати пірометр, та як вище вказані термометри не дають можливості вимірювати таку температуру. Пірометр Промінь М2, діапазон вимірюваної температури 1800-4000 °С. Похибка складає 35 °C. Дані пірометри виробляються в мікропроцесорному виконанні, мають вбудований таймер, пам'ять на 300 значень, також мають інтерфейс для передачі інформації на ПК і не тільки.

4.3.2 Контроль рівня

Для сигналізації рівня в збірнику готового продукту використовується сигналізатор рівня зі світовою індикацією РОС-301, що має робочий
надлишковий тиск до 1,6 МПа, температура контролюваного середовища не більше 150ºС.

4.3.3 Контроль тиску

Для контролю тиску в печі використовується манометр для вимірювання надлишку та вакууметричного тиску рідини та газу показуючий ДМ2010. Діапазон вимірювання від 0 до 60 кгс/см², клас точності 1,5.

4.3.4 Регулювання витрати

Витрата газу на вході в піч вимірюється вихровими витратомірами ЭМИС-ВИХРЬ 205 (занурювальний) (діапазон температур -40…+250ºС, робочий тиск до 4МПа) – призначений для виміру витрати газу, пари або рідини. Основна помилка для газу 2.5%.

Дотримання співвідношення витрат між технічним хлором і воднем відбувається за допомогою ПІД-регулятора одноканального співвідношення двох величин МТМ620 – призначений для виміру та регулювання по ПІД-закону двох фізичних величин (регулювання співвідношення витрати газу та рідини, концентрації і т.д.). Регулювання вимірюваної величини по ПІД-закону відбувається шляхом аналогового управління. Для переміщення регулюючого органу обрано електричний виконавчий механізм МЭО-100.

Для контролю та регулювання витрати рідини (хлороводневої кислоти, води) використовується діафрагма камерна ДКС 0,6 – 80 з діаметром 80 мм.

4.3.5 Регулювання концентрації водню

Регулювання концентрації водню в газах на виході зі скрубера
здійснюється за допомогою сигналізатора ТХС-1, що виконує контроль за концентрацією вибухонебезпечних речовин у газі. Діапазон вимірювання 0 – 50 % НКПР. Температурний режим -5…50°C.

4.3.6 Контроль концентрації

Для показання та контролю значення концентрації розчинів солей, лугів, кислот розроблено контур, що містить аналізатор рідини кондуктометричний АЖК-3101М (поз. 11-1, 16-1), що складається з первинного перетворювача, вимірювального пристрою, показувального приладу. Датчик через кожні 2 секунди передає сигнал на цифровий показувальний прилад, на якому відображається поточне значення концентрації в речовини в потоці.

Розроблена схема автоматизації відповідає всім вимогам і технічному регламенту, а значить може забезпечити ведення процесу виробництва хлороводневої кислоти.

В додатку В зображена схема монтажу діафрагми камерної

4.4 Монтаж звужуючого пристрою для вимірювання витрат

Стандартні камерні діафрагми «ДКС» призначені для створення перепаду тиску при вимірювані витрати рідин, газів або парів методом змінного перепаду тиску у фланцях трубопроводу.

Для того, щоб обрати потрібну нам діафрагму потрібно для початку розрахувати діаметр труби. Це можна зробити з допомогою цієї формули:

\[d = \sqrt[4]{\frac{4 \times Q}{\pi \times V}} \]

de Q – витрата потоку газу після печі у м3/с, а V – швидкість потоку у м/с.

Підставивши у формулу наші дані отримаємо:
Також діаметр труби можна розрахувати ще одним шляхом. Витрата газу рівна 0,0382 м³/с, при швидкості в 10 м/с діаметр внутрішній становить 0,00382. Отже, звідси за формулою визначаємо радіус:

\[d = \pi \cdot r^2 \]

\[r^2 = \frac{0.00382}{3.14} \]

\[r = 0.0348 \text{ м} \]

Якщо помножити на два, то отримаємо величину діаметру, розраховану у формулі вище.

У відповідності до табличних значень найближчий діаметр складає 80 мм. До цього діаметру було підібрано фланці, мембрану, патрубки і сам диск. Матеріал камери та диску: Сталь 12X18H10T ГОСТ 5632. На рисунку 4.1 буде показана діафрагма камерна стандартна.
Рис.4.1 – Діафрагма камерна стандартна
4.5 Висновок до розділу 4

В цьому розділі було розроблено схему автоматизації виробництва хлороводневої кислоти. Для автоматизації було використано контури регулювання витрати, температури і тиску. Також використані контури співвідношення вхідних потоків, контролюється якість продукції та концентрація вихідних газів. У відповідності до особливостей проведення технологічного процесу виробництва, було підібрано потрібні контури регулювання, контролю і сигналізації. Також розраховано діаметр звужуючого пристрою для вимірювання витрат. У відповідності до діаметру підібрано диски, фланці, патрубки.

Реалізованій схема автоматизації забезпечує протікання процесу згідно з технологічним регламентом.
5 ЕКОНОМІЧНО-ТЕХНІЧНІ РОЗРАХУНКИ

5.1 Схема організації цеху

Метою діяльності хіміко-технологічного цеху є отримання хлороводневої кислоти, яка використовується в багатьох сферах, зокрема металургійній та хімічній промисловості, для добування різних солей, також для виробництва барвників і навіть лікувальних речовин, що дуже актуально в наш час. Хлороводнева кислота належить до найсильніших кислот, і є розчином хлороводню у воді.

Даний проект передбачає розробку підприємства виробництва соляної кислоти методом зануренного горіння. Для того, щоб реалізувати проект було створено організаційна структура цеху(рис.5.1):

Рис.5.1 – Організаційна структура цеху

Продуктивність цеху зображена у таблиці 5.1. Дане виробництво має фіксоване значення, яке було вказано у завданні до дипломного проекту(600 кг/год).
Таблиця 5.1 - Продуктивність цеху

5.2 Технологічна підготовка підприємства

Виробничі процеси підприємства поділяються на 4 категорії: основні, допоміжні, підсобні та бічні. Класифікація виробничих процесів цеху по виробництву соляної кислоти наведена у таблиці 5.2[33].
Таблиця 5.2 Класифікація виробничих процесів

Тривалість виробничого циклу показано у таблиці 5.3.
Процес виробництва хлороводневої кислоти методом зануреного горіння передбачає безперервний режим роботи, співвідношення вхідних речовин 1:1.1, вхідні речовини перебувають в реакторі однаково рівно за часом. Такий характер отримання хлороводневої кислоти дає змогу обрати синхронізованій ВРПП (рис.5.2).
Таблиця 5.3. – Тривалість отримання готової продукції

Рис. 5.2 – Синхронізований ВРПП

5.3 Чисельність персоналу

Як було сказано вище, процес виробництва хлороводневої кислоти проходить безперервно. Значить робітники працюватимуть в 3 зміни по 8 годин. Автоматизація виробництва надає можливість у використанні невеликого виробничого персоналу, але у відповідності з явочною чисельністю – максимально допустима чисельність працівників, необхідна для виконання обсягу роботи та для повної комплектації робочих місць у зміні[33].

Явочна чисельність робітників у зміну (старший оператор виробництва,
опператор виробництва, оператор синтезу хлороводню, оператор абсорбції, 2 транспортувальники):

\[\text{Ч_явочна} = 6 \text{ працівників.} \]

\[\text{Ч_явочна} = 6 \times 3 = 18 \frac{\text{працівників}}{\text{добу}}. \]

Тривалість роботи підприємства на рік:

\[T_{підпр}^{рик} = 365 \times 24 = 8760 \text{ год./рік.} \]

Фактичний час напрацювання кожного працівника на рік:

\[T_{прац факт}^{рик} = \frac{365}{T_{зм.об.}} (T_{зм.об.} - T_{вих.})T_{зм.} = \frac{365}{16} (16 - 4) \times 8 = 2190 \text{ год./рік} \]

Кількість бригад:

\[N_{бриг.} = \frac{T_{підпр}^{рик}}{T_{прац}^{рик}} = \frac{8760}{2015} = 4,3 \]

Чисельність за списком це кількість персоналу, що необхідна підприємству для нормального функціонування. Сюди включають: штатну чисельність, для виконання незапланованих робіт, заміна хворих, відсутні у відпустках, або відсутніх з інших поважних причин та інші[33].

Кількість робочого персоналу за списком:

\[\text{Ч_{сп}} = \text{Ч_яв} \cdot \frac{T_{підпр}^{рик}}{T_{прац}^{рик}} = 6 \text{ працівників} \times \frac{8760}{2015} = 26 \text{ працівників.} \]

Графік роботи в цеху буде поділятись на:

I зміна – 8.00 – 16.00; II зміна – 16.00 – 00.00;

III зміна – 00.00 – 8.00.

Для підтримки безперервного виробництва хлороводневої кислоти, нам потрібно 4 бригади, як ми і розрахували. Таким чином можемо скласти графік змінності робочого персоналу(табл.5.4):
Табл.5.4 – Графік змінності робочого персоналу

Знаходимо нормативний відпрацьований час кожним працівником:

\[
T_{пр} = \frac{365 - 11}{7} \cdot 40 - (8) \cdot 1 = 2015 \text{ год/рік}
\]

\[
T_{перепрац} = T_{факт} - T_{роб.} = 2190 - 2015 = 175 \text{ год/рік}
\]

Оскільки час перепрацювання кожного працівника складає 175 год/рік - це було враховано при нарахуванні заробітної плати.

Підсумки розрахунку чисельності робочих записані в таблиці 5.5.

Таблиця 5.5 – Розрахунок чисельності робочих
5.4 Контроль виробництва

На підприємстві проводиться вхідний, поточний і підсумковий контроль.

Технічний контроль це перевірка відповідності продукції або процесу, від якого залежить її якість встановленим технічним вимогам. Об'єктами технічного контролю є сировина, незавершене виробництво, безпосередньо технологічний процес, співробітники і готова продукція[33].

Вхідний контроль це перевірка якості вхідної сировини перед запуском у виробництво. Суб'єктами є оператори виробництва. Вхідний контроль включає проби сировини, що надходять у виробництво. Аналіз сировини проводять візуально (зовнішній вигляд, запах, колір) і лабораторно (хімічний склад). Результати досліджень записують до спеціального журналу вхідного контролю.

Під час поточного контролю на підприємстві здійснюється перевірка виконання технологічних операцій. Крім того контролюють як працює обладнання і немає ніяких порушень. Об'єктами є технологічний процес і обладнання. Суб'єктами є оператор виробництва, оператор окиснення та оператор абсорбції. Апарати встановлюють згідно з правилами монтажу електрообладнання вимогам безпеки праці та пожежної безпеки. Кожен апарат повинен мати свою електричну проводку, захисні і заземлюючі пристрої, електричні контакти повинні бути щільно приєднані проти регулювання і безпеки закриті кожухами. Результати контролю заносяться в журнал поточного контролю.

При вихідному контролі здійснюється оцінка якості готової продукції. Основна мета контролю-виявлення браку, наскільки концентрована готова продукція. Суб'єктами є старший оператор виробництва, оператор окиснення та абсорбції. Аналіз готового продукту проводять лабораторно. Результати досліджень записуються в журнал вихідного контролю, на підставі якого
старшим оператором виробництва заповнюється паспорт якості на продукцію, і оформлюється паспорт на отриману продукцію. За технічним рівнем всі види контролю є ручними, тільки при перевірці обладнання та технологічного процесу використовують автоматизований вигляд.

Таким чином, на виробництві виконуються всі види контролю за стадіями процесу: вхідний, проміжний і вихідний.

5.5 Матеріальна, документальна та організаційно-технічна підготовка виробництва

Оборотні засоби – предмети праці, які повністю витрачаються в виробничому циклі та переносять свою вартість на вартість готової продукції цілком та одразу. До оборотних засобів відносять[33]:
- Затрати на сировину;
- Опалення приміщення;
- Електроенергія;
- Оренда будівлі;
- Заробітна плата.

Затрати на сировину та інші складові наведено у таблиці 5.6:
Таблиця 5.6 – Вартість Обф
1. Технічний хлор: за 1 год витрачається 195,5 кг, підприємство працює безперервно протягом року, за рік витрачається 195,5·24·365=1 712 580 кг.
Вартість 1 кг технічного хлору становить 15 грн.
Загальна річна сума – 1 712 580 ·15=25 688 700 грн
Технічний водень – на 195,5 кг для спалювання необхідно 5,5 кг або 61,6 м³ водню. Тобто за рік витрачається 61,6·24·365=539,616 м³.
Вартість 1 м³ технічного водню становить 20 грн.
Загальна річна сума – 539616 ·20=10 792 320 грн
Води в годину витрачається 496,5 м³. За рік 496,5·24·365=4 349 340 м³.
Вартість 1 м³ для підприємств становить 15 грн/м³.
Загальна річна сума – 4 349 340 ·15=65 240 100 грн.

2. Електроенергія:
Потужність обладнання N= 7500 кВт/год. Ціна в денний час – 1кВт= 2,5 грн., в нічний час – 1кВт = 2,5*0,5 = 1,25 копійок.
Підприємство працює 24 години на добу 365 днів на рік:
Денний час: В7:00–23:00 = 16 * 365 * 7500 * 2,5 = 109 500 000 грн/рік
Нічний час:В23:00–07:00 = 8 * 365 * 7500 * 1,25 = 27 375 000 грн/рік
Витрати на електроенергію:
\[Z_{e/e} = 109 500 000 + 27 375 000 = 136 875 000 \text{ грн/рік} \]

3. Витрати на опалення цеху. Загальна площа: 2000 м²; тарифна ставка на опалення: 36,97 грн./м² міс; Сезон опалення: 6 місяців
4. Заробітна плата працівників надана у таблиці 5.7:

Таблиця 5.7 – Заробітна плата працівників підприємства

Цопал. = 2000 \cdot 36,97 \cdot 6 = 443 640 \, \text{грн/рік}

Основні засоби – це засоби праці, які багаторазово приймають участь в процесі виробництва зі збереженням своєї матеріальної форми[33].

До основних засобів належать:

- будівлі і споруди;
- машини і обладнання;
- транспорт;
- виробничий і господарський інвентар;
- нематеріальні активи.

Розрахунок вартості ОФ підприємства наведені в таблиці 5.8:

Таблиця 5.8 – Розрахунок вартості ОФ підприємства
Амортизація: \(A = 336\,000\) грн/рік.

5.6 Розрахунок техніко-економічних показників

Розраховуємо собівартість(виробничу та повну):

\[
C_{\text{виробн.}} = A + \text{ОБЗ} = 336\,000 + 248\,637\,920 = 248\,973\,920\ \text{грн/рік}.
\]

\[
C_{\text{повна}} = C_{\text{виробн.}} + 20\% \text{ невраховані} + 50\% \text{ накладні} = 423\,255\,664\ \text{грн/рік}.
\]

Зведемо всі техніко-економічні показники в таблицю 5.9.

Таблиця 5.9 Техніко-економічні показники підприємства
З отриманих результатів можна зробити висновок, що підприємство є вигідним, так як, має термін повернення капіталовкладень 2,45 роки.

5.7 Перерахунок техніко – економічних показників з використанням засобів автоматизації

Для автоматизації виробництва хлороводневої кислоти, було застосовано нове обладнання на установку, датчики контролю та регулювання, датчики співвідношення, а також було встановлено автоматизовану лінії транспортування вихідного продукту, що привело до зменшення кількості персоналу а також зростанню якості продукції.
Тепер транспортувальники нам не потрібні, також, багато завдань які виконували оператор виробництва та абсорбції уже автоматизовані. Але вони не будуть без роботи, так як потрібно налаштовувати лінію та періодично слідкувати за її роботою. Явочна чисельність робітників цеху:

\[\text{Ч}_{\text{явочна}} = 4 \text{ працівників.} \]

\[\text{Ч}_{\text{явочна}} = 4 \times 3 = 12 \frac{\text{працівників}}{\text{добу}}. \]

Кількість робочого персоналу за списком:

\[\text{Ч}_{\text{сп}} = \text{Ч}_{\text{яв}} \cdot \frac{T_{\text{підпр}}}{T_{\text{прац}}} = 4 \text{ прац.} \cdot \frac{8760}{2015} = 17 \text{ прац.} \]
Нова кількість працівників наведена у табл. 5.10.
Таблиця 5.10 – Кількість працівників

Заробітна плата працівників підприємства наведена у табл. 5.11.
Таблиця 5.11 - Заробітна плата

Нова вартість Обз зображена у таблиці 5.12.
Таблиця 5.12 Вартість Обз
Розрахунок вартості ОФ підприємства наведені в таблиці 5.13:

Таблиця 5.13 – Розрахунок вартості ОФ підприємства

Амортизація: \(A = 401\ 000 \)

Розраховуємо собівартість(виробничу та повну):
\[C_{\text{виробн.}} = A + \text{обз} = 401\ 000 + 246\ 925\ 040 = 248\ 973\ 920 \text{ грн/рік} \]

\[C_{\text{повна}} = C_{\text{виробн.}} + 20\% \text{ невраховані} + 50\% \text{ накладні} = 420\ 454\ 268 \text{ грн/рік} \]

Зведемо всі техніко-економічні показники в таблицю 5.14.

Таблиця 5.14 – Нові техніко – економічні показники
5.8 Порівняння техніко-економічних показників звичайного та автоматизованого виробництва соляної кислоти

Порівняння техніко-економічних показників до і після автоматизації наведено у табл. 5.15.

Із зображеного у табліці 5.15, можна зробити висновок, що виробництво, яке є більш технологічним і автоматизованим працює ефективніше. Прибуток виріс на 13 313 396 грн/рік, рентабельність підприємства збільшилась на 3.3 % а також період повернення капіталовкладень зменшився на 0.28 року.

Таблиця 5.15 – Порівняння техніко – економічних показників
5.9 Висновок до розділу 5

Таким чином, можна зробити висновок, що автоматизація виробництва в наш час є надзвичайно актуальним та економічно вигіднішим ніж виробництво старого формату, тобто без автоматизації.
6 ОХОРОНА ПРАЦІ

В даному проекті був розглянутий технологічний об’єкт – процес виробництва хлороводневої кислоти. Як видно з технологічної частини під час виробництва використовуються вибухонебезпечні і шкідливі речовини, також тепло - i електроенергія. Всі проектні рішення прийняті з урахуванням вимог охорони праці, пожежної безпеки та екологічних питань. Базуючись на отриманих даних з аналізу небезпечних і шкідливих виробничих факторів були розроблені заходи для нормалізації умов праці на робочих місцях та пожежної безпеки.

6.1 Виявлення і аналіз шкідливих і небезпечних факторів на проектованому об’єкті. Заходи з охорони праці

6.1.1 Повітря робочої зони

Роботи, які виконуються в цеху по важкості відносяться до категорії 1-б, відповідно до ДСН 3.3.6.042-99[34]. Санітарні та фактичні норми параметрів мікроклімату для робіт, які виконуються в цеху, наведені в таблиці 6.1.

Таблиця 6.1 – Санітарні норми параметрів мікроклімату цеху
В даному приміщенні в холодний період року температура підтримується за допомогою системи центрального парового опалення. Відносна вологість і швидкість руху повітря регулюється з допомоги вентиляторів і хвірток[35].
Таблиця 6.2 – Санітарна характеристика виробництва

З метою забезпечення чистоти робочої зони, а також нормативних рівнів параметру мікроклімату була передбачена механізація і автоматизація важких та трудомістких робіт; дистанційне управління апаратами і процесами; раціональне розміщення обладнання; герметизація виробничих процесів; теплоізоляція обладнання, що випромінюють на робочих місцях тепло, а також передбачена аварійна вентиляція[35].
6.1.2 Виробниче освітлення

Приміщення лабораторії за нормами освітлення у відповідності з ДБН В.2.5.28-06 відноситься до ІІІ розряду приміщень за задачами зорової роботи[36]. У приміщенні передбачено штучне, локалізоване і природне освітлення. Природна система освітлення представляє собою бокове одностороннє освітлення. Штучне освітлення реалізовано використанням світильників, розташованих у верхній зоні приміщення(загальне освітлення)[36].

В таблиці 6.3 наведено санітарно-гігієнічні норми параметрів освітлення.

Таблиця 6.3 - Норми штучного освітлення коефіцієнта природної освітленості (КПО) виробничих приміщень
У розробленому проекті за функціональним призначенням система освітлення можна поділити на: робочу, ремонтну, евакуаційну, охоронну і аварійну. Для виконання ремонтних робіт проектом передбачені переносні електричні світильники. При відключенні робочого освітлення передбачається система аварійного освітлення. Для аварійного освітлення передбачено використання люмінесцентних ламп типу ЛБ потужністю 40 Вт[36].

Оскільки у виробничому цеху є вибухонебезпечні зони, то для вимірювання й контролю освітленості будуть використані люксметри Ю-117. Також на виробництві знаходиться приміщення для двох операторів пульта управління. У даному приміщенні наявні два робочих місця з обладнанням ЕОМ. Таким чином, можемо розрахувати освітленість робочого місця операторів за методом використання світлового потоку. Рівень природної освітленості – 200 лк, за освітленості тієї же поверхні відкритим небосхилом в 20 000 лк. Отримуємо КПО = 1%, що не відповідає нормативному КПО.

Розміри приміщення робочого місця операторів: ширина – 4 м, довжина – 8 м, висота – 4 м, площа - 28 м². Визначимо світловий потік, що падає на робочу поверхню за формулою (6.1) [10]:

$$F = \frac{E \times K \times S \times Z}{\eta}$$

де F - світловий потік, що розраховується, Лм; E = 300 Лк – нормована мінімальна освітленість; S = 28 м² – площа освітлюваного приміщення;

Z = 1,1 - відношення середньої освітленості до мінімальної; K = 1,5 - коефіцієнт запасу; η - коефіцієнт використання світлового потоку, що характеризується коефіцієнтами відбиття від стін $\rho_{ст} = 50\%$ і стелі $\rho_{стел} =$
50%. Обчислимо індекс приміщення за формULOю (6.2):

\[
I = \frac{S}{h_p \cdot (A + B)} = \frac{28}{1 \cdot (8 + 4)} = 2,33, \tag{6.2}
\]

де \(h_p\) – розрахункова висота підвісу (\(h_p = h_1 - h_2, h_p = 1\) м).

При \(I = 2,54\), коефіцієнт використання світлового потоку \(\eta = 0,77\).

Підставимо всі значення у формулу для визначення світлового потоку:

\[
F = \frac{300 \cdot 1,5 \cdot 28 \cdot 1,1}{0,77} = 18 000 \text{ Лм}
\]

Для освітлення використані люмінесцентні лампи типу ЛБ-40, світловий потік яких \(F = 3120 \text{ Лм}\). Розрахуємо необхідну кількість ламп у світильниках за формулою (6.3):

\[
F = \frac{F}{F_n} = \frac{18 000}{3 120} \approx 6,
\]

де \(N\) – кількість ламп, що визначається; \(F\) – світловий потік; \(F_n\) – світловий потік лампи.

В приміщенні використовуються світильники типу НОДЛ. Кожен світильник комплектується двома лампами. Тобто необхідно використовувати 3 світильники із 2 працюючими лампами в них.

Схема розташування світильників в операторській зображена на рисунку 6.1:

Рисунок 6.1 – Схема розташування світильників в приміщенні
6.1.3 Захист від виробничого шуму й вібрацій

В цеху основними джерелами шуму і вібрацій є реактор, холодильник-абсорбер, сепаратор і хвостовий скрубер. У виробничих приміщеннях є прийнята норма рівня звуку, яка немає перевищувати 80дБА. Так як за технічними показниками обладнання значення шуму в цеху не перевищує 80дБА, то умови роботи в цеху відповідають санітарним нормам[37].

Для зниження динамічного навантаження, яке виникає в машинах, передбачено наступні шляхи[38]:

- Ліквідація перекосів та великих зазорів у підшипниках;
- Надійне закріплення рознімних частин обладнання;
- Ретельне динамічне балансування обертових частин агрегатів;
- Для зниження рівня вібрації використовується віброізоляція. Під вібруюче встаткування ставляться амортизатори вібрацій, виготовленні зі сталевих пружин.

В якості індивідуальних засобів захисту від шуму передбачено протишумові вкладиші. Також, щоб захистити руки від впливу вібрацій передбачено рукавички зі спеціальними віброзахисними вставками. Відповідно для захисту ніг від вібрацій передбачено взуття з товстою гумовою підошвою. Для вимірювання вібрацій та шуму використовується вимірювач ВШВ-003х[38].

6.1.4 Електробезпека
Електрообладнання у виробництві живиться від трифазної чотирипровідної електричної мережі зміного струму промислової частоти 380/220 В з глухо заземленою нейтраллю. Для зміного струму з частотою 50 Гц максимальні допустимі значення напруги контакту і струму, що проходять через тіло людини, в аварійному режимі $I_l = 6$ мА, $U_{дот} = 36$ В; при нормальній роботі електрообладнання $I_l = 0,3$ мА, $U_{дот} = 2$В.

Таблиця 6.4 – Нормативні значення величини сили струму і напруги дотику

Причини ураження електричним струмом робітників у цеху – дотик до відкритих струмопровідних елементів обладнання, що опинились під напругою в результаті порушення ізоляції. При однофазному доторканні людини до неізольованої частини устаткування через неї протікатиме струм величиною:

$$I_s = \frac{U_ф \cdot 10^3}{R_л + R_0} = \frac{220 \times 10^3}{4000 + 4} = 55, \text{ мA}$$

де $R_л = 2...4$ кОм, опір тіла людини; $R_0 = 4$ Ом, опір нейтралі заземлення; $U_ф = 220$ В, фазова напруга, В.

$$U_{дот} = I_l \cdot R_л \cdot 10^2 = 0,05 \cdot 4000 = 220 \text{ В}.$$

Порівнюючи розрахункові значення і нормативні, одразу зрозуміло, що при порушенні вимог ПУЕ на об’єкті можливі електротравми з тяжкими наслідками.

Таблиця 6.5 – Класифікація приміщень за ступенем небезпеки ураження електричним струмом
Для попередження електротравматизму були передбачені наступні організаційні заходи та технічні засоби: занулення, мала напруга, захисне відключення, вирівнювання потенціалів, ізоляція струмоведучих частин, огороджувальні пристрої, подвійна ізоляція, електричний розподіл мереж, блокування, сигналізація, попереджувальні плакати та знаки безпеки[38].

У виробничих приміщеннях передбачено періодичну перевірку вибраних типів проводів, електродвигунів, освітлювальної арматури і іншого електрообладнання.

Безпека експлуатації електроустановок при нормальному режимі дотримуватиметься з допомогою ізоляції струмоведучих частин, опір ізоляції у свою чергу не менш 0,5 МОм та малими напругами(на переносних світильниках). Джерела малої напруги – понижуючі трансформатори із вторинною напругою 12-36 В.

Для забезпечення індивідуального захисту(ЗІЗ) використовуватимуть діелектричні гумові рукавички, інструмент із ізоляючими рукоятками, гумові ізоляючі підставки, покажчики напруги, діелектричні калоші, килими гумові, захисні окуляри та тимчасові огородження[38].

6.1.5 Безпека технологічних процесів та обслуговування обладнання

Виходячи з технологічної частини проекту можна виділити такі основні причини виникнення аварійної ситуації:

• Попадання сторонніх продуктів в реактор. Призводить до

прискорення побічних реакцій, порушення температурного режиму. Виникає
при відмові технологічного обладнання та засобів автоматизації.

• Порушення складу вихідних компонентів, які подаються у вигляді газу у реактор. Призводить до зміни співвідношення реагуючих речовин, наслідком чого можливе збільшення швидкості хімічного перетворення речовин. Причини цього порушення – відмова засобів автоматизації.

Надійний засіб інтенсифікації і захисту потенційно небезпечних об’єктів це створення автоматичних систем захисту. Що стосується інших методів зниження небезпеки, то зниження швидкості протікання процесу можна досягнути варіюванням температурного режиму. Параметри, які характеризують протікання процесу (температура, тиск) необхідно підтримувати постійними.

Заходи безпеки, що передбачені проектом до технологічних процесів:
- Комплексна механізація, автоматизація, застосування дистанційного керування технологічним процесом і операціями при наявності небезпечних і шкідливих виробничих факторів;
- Застосування систем контролю і керування технологічним процесом у цеху, які забезпечують захист працюючих і аварійне відключення виробничого обладнання;
- Своєчасне отримання інформації про виникнення небезпечних і шкідливих виробничих факторів, що було досягнене за допомогою пристроїв, що сигналізують і подають інформацію про роботу технологічного обладнання, про зміни протягом процесу, попереджають про небезпеки і повідомляють, про місце їхнього знаходження і при необхідності автоматично відключають аварійні ділянки.
- Виключено безпосередній контакт працюючих з вихідними матеріалами, які оказують шкідливу дію. Для подачі хлору і водню в реактор використовуються засоби автоматизації і дистанційне керування процесом.
6.2 Пожежна безпека

Джерелами запалювання проектованої технологічної лінії можуть стати: електричні іскри, дуги, що виникають коли пошкоджена ізоляція та при накопиченні заряду статичного струму, концентрація водню в повітрі, необережне поводження людей з вогнем, дерев’яні елементи будівель, спалах технологічного обладнання, а також прямий удар блискавки. Для уникнення прямих ударів блискавки споруди захищені стрижневими блискавко відводами, а також використано заземлення. В таблиці 6.6 наведені показники пожежо- та вибухонебезпечних речовин і матеріалів, які використовуються в цеху[39].

Проектом передбачено наступні засоби захисту від джерел згорання:

- захист силових мереж від перенавантаження та короткого замикання здійснюється пристроями автоматичного вимкнення та плавкими запобіжниками;
- біля приміщення та обладнання наявний протипожежний водопровід, пожежні крани діаметром 50 мм і довжиною рукава 20 м;
- для запобігання від теплових та механічних пошкоджень проводка знаходиться подалі від джерел тепла та схована в трубах;
- змонтована сигналізація з датчиками РП – 50 і СТХ – 174;
- для запобігання утворення вибухонебезпечної концентрації водню в повітрі встановлені газоаналізатори, що сигналізують про небезпечну ситуацію.

Приміщення цеху, оснащене системою автоматичної пожежної сигналізації та переносними пінними вогнегасниками з розрахунком 2
штуки на кожні 20 м² площі приміщення з урахуванням ГДК вогнегасної речовини[39].

Показники пожежо – та вибухонебезпечності речовин та матеріалів занесені до таблиці 6.6[39].

Таблиця 6.6 – Показники пожежо – та вибухонебезпечності речовин та матеріалів. Класифікація виробництва щодо вибухо- і пожежонебезпечності
та влаштування блискавкозахисту
6.3 Висновок до розділу 6

У даному розділі було проведено аналіз небезпечних і шкідливих виробничих факторів, які були виявлені на даному виробництві. Також розроблені заходи, для створення безпечних умов праці.
ВИСНОВОК

В ході розробки даного проекту було проаналізовано та вивчено технологічний процес виробництва хлороводневої кислоти методом зануреного горіння. Також було спроектовано та розраховано технологічний апарат – насадковий абсорбер.

За допомогою розробленої схеми виробництва у програмі симуляторі ChemCad 7.1.2, були розраховані матеріальні баланси схеми.

Було виконано комп'ютерний розрахунок процесу, для чого:

- підібрана математична модель, на основі якої розроблено програмний модуль для розрахунку конструктивних параметрів апарату і перевірена правильність цих розрахунків;
- розроблена схема автоматизації процесу виробництва соляної кислоти для регулювання витрати в апаратах і трубопроводах, регулювання температури і тиску і печі, регулювання співвідношення витрат технічного хлору та технічного водню, контроль температури на вході у скрубер, сигналізація рівня заповнення збірника готового продукту та інше;
- проведено економічні розрахунки, які підтвердили доцільність впровадження даної технологічної схеми у виробництво;
- проект виконано з урахуванням вимог охорони праці та пожежної безпеки.
СПИСОК ЛІТЕРАТУРИ

1. Sp_Rozd_ZHT_Lektsii.pdf
2. (298) M-LINK: собственный протокол TRACE MODE для RS - YouTube
3. деление качества (концентрации) кислоты, получаемой на стадии абсорбции перед ее ... - Справочник химика 21
4. Содержание, % хлористого Не менее 27,5 Не менее 33,0 31,5 - Справочник химика 21
7. Скачать RTM II-2-67 Руководящие материалы по выбору диаметра трубопроводов. Оптимальные скорости в трубопроводах
9. 3(72).pdf
10. skorospeshkin_vn_avtomatizirovannye_informatsionnoupravlyayu.pdf
11. Microsoft Word - Ларичева Контроль та автм рег посіб.doc
12. Microsoft Word - ТИТУЛ_ВЬХОДНЬЕ_Том 2-начало_.doc
13. http://data.vk.edu ee/Web_personnel/SergeyChecryzov/Automaatjuhtimiss%D0%93%D1%98steemid/AJS2.pdf
15. Development of a hydrochloric acid process for the production of alumina from clay
18. Рис. 15. Схема автоматизации процесса и контроля производства соляной кислоты ... - Справочник химика 21
19. https://ence.ch/ru/equipment/equipment-for-chemical-petrochemical-and-
gas-processing-industries/hcl_production/
0168189/
4129125/
25. https://www.stud24.ru/chemistry/virobnictvo-hlorovodnevo-solyano-
kisloti/507685-2081209
27. https://chem21.info/page/03115707503704709016215323502419422703409
0232141/
_i_energeticheskie_raschety_vhimii_i_himicheskoy_tehnologii.pdf
29. https://kpfu.ru/staff_files/F849841840/belyaeva_i_i_sbornik_zadach_po_hi
micheskoi_tehnologii.pdf
30. https://edu.donstu.ru/scan/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4
%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5%20
%D1%83%D0%BA%D0%B0%D0%B7%D0%B0%D0%BD%D0%B8%D1
%8F/2019-
2020/rb180301%D0%AD%D0%A5_55_2%D1%82%D0%BF%D0%BD
%D0%B3-
19.plx/%D0%9E%D0%B1%D1%89%D0%B0%D1%8F%20%D1%85%D0
%B8%D0%BC%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0
%D1%8F%20%D1%82%D0%B5%D1%85%D0%BD%D0%BE%D0%BB
%D0%BE%D0%B3%D0%B8%D1%8F.pdf

37. ДСН 3.3.6.037-99. Санітарні норми виробничого шуму, ультразвуку та інфразвуку. Київ, 1999. 34 с.

<table>
<thead>
<tr>
<th>Вик. Аркуш</th>
<th>№ документа</th>
<th>Підпис</th>
<th>Дата</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ДП ХА 6108 1490 001 ПЗ

Аркуш 81